
Rushing the CGP Logic Optimization Flow
Bryan M. Lima, Naiara Sachetti, Augusto Berndt, Cristina Meinhardt and Jonata Tyska Carvalho

Department of Informatics and Statistics, Federal University of Santa Catarina - UFSC
Florianópolis, Brazil

bryan.l@grad.ufsc.br, naiara.sachetti@grad.ufsc.br, augusto.berndt@posgrad.ufsc.br,
cristina.meinhardt@ufsc.br, jonata.tyska@ufsc.br

Abstract—With Moore’s law slowing down, the process of logic
synthesis is struggling to maintain the same technological growth
rate. In this scenario, alternative methods started to appear. With
the ascension of Machine Learning, these algorithms became
more attractive, taking another approach to the concept of large
integrated circuits. While the best circuit implementation for a
problem involves a trade-off between power, area, and delay,
these alternative methods are more attractive in error-tolerant
applications when they can have a better overall circuit to the
detriment of accuracy. One of these methods is Cartesian Genetic
Programming (CGP), a subclass of Evolutionary Algorithms that
uses concepts from biological evolution, such as recombination,
mutation, and fitness, applied in electronic design automation
(EDA). The main challenge of CGP-based flows is reducing the
extensive runtime necessary to learn the circuit compared to
other logic synthesis strategies. This paper investigates strategies
for lowering the CGP runtime while finding logic circuits with
even or better accuracy. We specifically study how different ways
of evaluating the candidate solutions, using partial or complete
truth tables, impact the runtime and accuracy of the evolved
solutions. We show that, in some cases, by using only portions
of the truth table, the CGP achieves better accuracy in less time
than using all of the truth table lines.

Index Terms—Logic synthesis, Cartesian Genetic Program-
ming (CGP), Evolutionary algorithms

I. INTRODUCTION

Logic optimization is an initial task in the synthesis flow
where the main target is reducing the number of elements,
including nodes and logic depth. These optimizations will
influence the next steps in the synthesis flow, impacting
area, delay, and power results. Traditional logic optimiza-
tion methods simplify a Boolean function, exploring exact
logic minimization techniques like the Algebraic method,
the Karnaugh map technique [1], or the Quine-McCluskey
method [2]. However, the main limitation of the traditional
logic optimization methods is the number of inputs that they
can deal with. For instance, the Quine-McCluskey method is
limited to functions with up to 15 variables [3]. For real world
applications Espresso is used for simplification of circuits with
many inputs reaching faster results by exploring sub-optimal
heuristic methods [4] [5]. These fast simplification methods
provide a trade-off for computing performance at the cost of
output quality.

Some new logical optimization flows address fast logic opti-
mization based on machine learning approaches like decision
trees [6]. However, many of them fail to deal with scaling
the logic functions’ complexity. For example, decision tree
solutions, in general, must expand all the input combinations,

which becomes prohibitive for large inputs. To deal with
the expensive rising of complexity on logic functions, neural
networks [7], or evolutionary algorithms as Cartesian Genetic
Programming [8], [9] have been recently studied. An important
drawback of these approaches is the large runtime compared
to the traditional logic synthesis approaches.

Cartesian Genetic Programming (CGP) is a form of genetic
programming that uses a graph representation to encode com-
puter programs. It is called ’Cartesian’ because it represents a
program using a two-dimensional grid of nodes [10]. In [8],
[9], a CGP-based flow that seeks to optimize both accuracy
and size is proposed. The results of this flow are two-fold: (i)
it allows to improve further the solutions found by the other
techniques used for bootstrapping the evolutionary process,
and (ii) seek optimal circuits starting the CGP search from
random (unbiased) individuals [9]. However, the runtime for
learning a Boolean function is considerably large. This is due
to the number of generations needed to improve the accuracy.
Overall, the proposed CGP-flow presents a good trade-off
between accuracy and nodes reduction, mainly when explored
to improve an initial solution.

Approximate Computing is a paradigm to speed up the
design flow and produce power-efficient solutions for error-
tolerant applications. As these applications have less strict
accuracy requirements of the implemented functions, it is
possible to focus on a smaller circuit, which can improve
delay and power [11]. In these integrated circuits (IC) power
efficiency is as important as its accuracy. We can use ap-
proximate Computing to generalize a circuit based on a
few selected samples in this context. This was one of the
goals of the International Workshop on Logic and Synthesis
(IWLS) Contest in 2020 [12], in which multiple teams of
different countries competed to generalize logic functions.
The teams used multiple strategies, including Espresso [4],
multi-layer perceptrons (MLP), random forests, lookup-table
(LUT) networks as well as CGP [7]. Overall, the presented
results confirmed that sacrificing some accuracy was possible
to achieve a significantly smaller circuit.

In this context, our work investigates strategies for decreas-
ing the runtime required for the CGP flow and finding good
solutions. We investigate how different ways of evaluating
candidate solutions affect the runtime and the CGP generaliza-
tion capacity, seeking to optimize it. We investigate whether
and how it is possible to improve runtime synthesis and with
reasonable accuracy by using only portions of the truth table



to evaluate individuals.
This paper is organized as follows. Section II presents

the core definitions for a better understanding of the CGP
algorithm and the means to collect the data. In section III
there is a discussion on the data collected. Finally, section
IV concludes this work and presents future work further to
improve the CGP flow runtime for approximate Computing.

II. METHODOLOGY

In our implementation we explore the utilization of AND-
Inverter Graphs (AIGs), which are the state-of-the-art data
structure for technology-independent optimizations during
logic synthesis [13]. An AIG is a directed acyclic graph
composed of nodes representing AND gates and edges rep-
resenting inverted or directed connections. An AIG node is
composed of exactly two inputs and an arbitrary number of
outputs. An AIG may represent any logic function. In our CGP
implementation an AIG is represented as an individual from
the CGP population, and CGP mutations concern modifying
the AIG connections and inversions.

The CGP evaluates all the individuals every generation, after
they are mutated. The evaluation process for each of them
requires processing all the training batch inputs. This is done
with a depth first search along the AIG. In other words, the
evaluation has a time complexity of O(i ∗ n ∗ b), with i being
the number of individuals in the CGP population, n the size
of each individual, and b the batch size (BS) used for training.

Our work is an improvement upon the CGP C++ implemen-
tation used in [9]. The main difference in our version is when
to evaluate the nodes accuracy, as this process is computation-
ally costly. For this , we used the proposed strategy in [14]
which is to evaluate only the functional nodes. This change
was not only better for performance, but it was necessary to
be possible to evenly compare the multiples hyperparameters
used in CGP.

A. Definitions

Definition 1 (Batch size): For approximate computing, the
CGP can evaluate candidate solutions using less lines than the
whole truth table. The number of lines used is called batch
size (BS).

Definition 2 (Change each): When BS is lesser than the
whole truth table the change each (CE) represents for how
many generations the algorithm will use the same batch
for evaluating the candidate circuits. After that number of
generations, a different batch will be sampled and used for
evaluation.

Definition 3 (Mutation): Is the process in which a circuit
is changed so as to explore the search space. These mutations
occur in the AIG nodes based on upon the 1/5th rule described
in [15].

Definition 4 (Fitness): In this work, fitness means the
capability of a circuit to produce the correct outputs given
a set of inputs (accuracy). However, it can be defined as a
different optimization goal in mind such as size, for example.

Definition 5 (Search algorithm): The search algorithm used
is the (1+4)−ES [16] strategy. Therefore, a so-called parent
circuit will generate 4 mutated (child) circuits. The circuit with
the best fitness, including the parent, will be selected as the
parent of the next generation.

B. CGP hyperparameters

Since we want to investigate how different ways of evalu-
ating individuals impact on runtime and synthesized solutions
accuracy, we mainly explore two CGP hyper-parameters: (i)
the batch sizes used by that run; and (ii) the change each.
We provide an example for illustrating how these parameters
affects the CGP flow in practice. For instance, in a CGP run
with 10.000 generations, a batch size of 64, and a change
each equal to a 1.000, the mini-batches will change 10 times.
These parameters are related to the train set used in the CGP
program. Therefore, with a truth table with 1024 lines, a batch
size of 64 is only 6.25% of the complete circuit.

As the main benefit of CGP in logic synthesis is to generate
a complete circuit based upon an incomplete truth table, our
main objective was to identify some evidences to improve
the accuracy, and/or the convergence time to generate the
circuit when compared to running CGP with the complete truth
table. For this, we ran the algorithm with the only completely
specified function of the IWLS Contest 2020, the exemplar
41. Therefore, it is possible to measure our implementation
performance with a number of variations of the investigated
hyperparameters. The exemplar 41 is an arithmetic function
representing the least significant and middle bit of an n-bit
square-root.

III. RESULTS

In this Section we will present the results obtained with
the experiments performed on the previously discussed logic
function. Table I shows the hyperparameters used in our
experiments. We used 50.000 generations, which is not much,
to identify which of parameters impacted the initial learning
of the circuit the most. The number of generations directly
impact the time to learn the logic function, which varied
between 60 and 340 seconds per seed depending on the BS
value. Using an interval of 128 between each BS provides
us with the information of to what extent the CGP can
produce circuits able to generalize for each BS value on this
particular function. We used a number of nodes of 250, which
means that the CGP could use a maximum of 250 functional
nodes. Moreover, we used 10 seeds per run, i.e. the CGP was
executed with 10 different seeds for its random initialization.
As this algorithm is impacted by its initial circuits, 10 runs
provided enough information to fairly compare the results.
Furthermore, we designed experiments aiming to discover
how the CE could affect the performance achieved using
each BS value. Therefore, considering the combinations of
BS, CE and the number of seeds, we ran a total of 630
experiments for the exemplar ex41. It is noteworthy that the
number of generations and number of seeds does not provide
directed useful information as to analyze the CGP algorithm



TABLE I
HYPERPARAMETERS TESTED

Parameter Value
Number of Gen-
erations

50.000

Batch size 128, 256, 384, 512, 640, 768, 896
Change each 1000, 2000, 3000, 4000, 5000,

10000, 15000, 20000, 25000
Number of nodes 250
Number of seeds 10

TABLE II
COMPARISON OF THE BEST CE (CONSIDERING ACCURACY) FOR EACH BS

BS Best CE
128 4000
256 2000
384 2000
512 4000
640 4000
768 3000
896 1000

performance. Therefore, the number of generations was not a
set of values, as we intended to investigate the two primary
hyperparameters, the CE and BS. For this, we kept this value
as a constant. Similarly, the value for the number of seeds
was used as we could gather enough information for these
two primary hyperparameters so we could actually confirm
any impact to the algorithm performance. As the algorithm
is sensitive to its seed, using a small value of the number of
seeds could drive us to wrong conclusions. It will be possible
to notice the variations on the accuracy on the box plots in
this section.

Figure 1 presents the accuracy of the best CE value for
each BS. It is noteworthy that the BS of 1024 is using the
complete truth table. As we can see, 512 and 786 values have
a better median compared to the complete batch. Furthermore,
an evolutionary process using a BS of 256 could generate
circuits able to generalize and achieve comparable accuracy
to the complete version with only a quarter of the truth table.
Table II shows the values of the CE which composes figure
1. It is possible to notice that for all BS the best values
of CE were relatively small, between 2% and 8% of the
whole evolutionary process. Furthermore, figure 2 presents
the number of functional nodes of the 250 maximum for the
given batch sizes. The data on the BS of 512 was particularly
interesting considering its size, as it was possible to achieve
a similar accuracy compared to the complete version, while
having a 40% decrease on the functional nodes. This indicates
that the CGP could not only generalize, but optimize the logic
function using half the lines of the truth table.

Figure 3 shows a comparison of the learning accuracy
for exemplar ex41. The vertical axis presents the accuracy
improvement along the generations on the horizontal axis.
We present three BS options used during learning. Both
128 and 512 BS presents decreases in accuracy every 4.000
generations, this is due to the CE value which modifies the
minterms composing that batch. The complete batch includes

Fig. 1. Comparison of Accuracy considering different BS

Fig. 2. Comparison of the number of functional nodes considering different
BS

all combinations, for this reason there is no decrease in
accuracy, since all the lines are available since the beginning.
It is noteworthy, that the accuracy displayed is relative to
the size of the BS. For that reason, the BS of 128 has an
easier task, compared to batches with higher values, as it only
needs to learn 128 lines of the complete truth table. These
results indicate that could be worthy to investigate whether
gradually increasing the CE value could improve the CGP
flow in regarding accuracy and/or runtime. Furthermore, we
can see how drastically the accuracy is lost when a batch
change occurs. A possible strategy that could be investigated
to mitigate this effect is to partially change the batch, i.e.
changing 50% of the batch when a CE occurs.

Finally, figure 4 presents the comparison of the runtime in
seconds between all the BS tested as well as the complete
version. The 512 BS had a median of 20.96 seconds compared
to the 28.33 seconds of the complete version. This roughly
represents a 26% improvement in time. Moreover, the BS
of 512 had a better accuracy as shown in figure II, which



Fig. 3. Comparison of Learning on two different BS with exemplar ex41

Fig. 4. Comparison of runtime between each BS

further confirms our initial hypothesis. Overall, the results
indicate that using only a portion of the the truth table can
indeed improve both the accuracy and the runtime of the CGP
algorithm, as well as the circuit size.

IV. CONCLUSION

This work explored whether different evaluations strategies
can lead to improvements into the CGP search algorithm
regarding runtime and accuracy of the synthesized solutions.
Our results confirmed that by optimizing the batch size and the
frequency it is changed along the evolution (change each) we
can obtain significant improvements on the CGP flow speed
and quality. Moreover, the experiments presented in Section
III, indicate a promising future research direction of gradually
increasing the BS. It seems that by doing it, CGP could
improve even further by balancing fast circuits evaluations
at the beginning of the evolutionary process and accuracy
estimation at the end. Furthermore, we intend to develop an
automated flow that dynamically tests these hyperparameters
according to the function at hand. As our results are only
for one arithmetic function, these parameters may not be the
optimal ones if used in another one.

Another future work, already in progress, is investigating
how partially changing the BS every CE may further accelerate
the CGP.

ACKNOWLEDGMENT

This work was financed in part by National Council for
Scientific and Technological Development – CNPq and the
Propesq/UFSC.

REFERENCES

[1] M. Karnaugh. The map method for synthesis of combinational logic
circuits. Transactions of the American Institute of Electrical Engineers,
Part I: Communication and Electronics, 72(5):593–599, 1953.

[2] W. V. Quine. A way to simplify truth functions. The American
Mathematical Monthly, 62(9):627–631, 1955.

[3] Olivier Coudert and Tsutomu Sasao. Two-Level Logic Minimization,
pages 1–27. Springer US, Boston, MA, 2002.

[4] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimiza-
tion for pla optimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 6(5):727–750, 1987.

[5] Robert K. Brayton, Gary D. Hachtel, Curtis T. Mcmullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Syn-
thesis”. The Kluwer International Series in Engineering and Computer
Science, 2:1–194, 1984.

[6] Brunno A. de Abreu, Augusto Berndt, Isac S. Campos, Cristina Mein-
hardt, Jonata T. Carvalho, Mateus Grellert, and Sergio Bampi. Fast
logic optimization using decision trees. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2021.

[7] Yukio Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi, and Masahiro
Fujita. Logic Synthesis for Generalization and Learning Addition. In
2021 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1032–1037, 2021.

[8] Augusto Berndt, Brunno A. de Abreu, Isac S. Campos, Bryan Lima,
Mateus Grellert, Jonata T. Carvalho, and Cristina Meinhardt. Accuracy
and size trade-off of a cartesian genetic programming flow for logic
optimization. In Proceedings of the 34th Symposium on Integrated
Circuits and Systems Design, SBCCI ’21, 2021.

[9] Augusto André Souza Berndt, Brunno Abreu, Isac S Campos, Bryan
Lima, Mateus Grellert, Jonata T Carvalho, and Cristina Meinhardt. A
cgp-based logic flow: Optimizing accuracy and size of approximate
circuits. Journal of Integrated Circuits and Systems, 17(1):1–12, 2022.

[10] Julian Francis Miller. Cartesian genetic programming: its status and
future. Genetic Programming and Evolvable Machines, pages 1–40,
2019.

[11] Hrishav Bakul Barua and Kartick Chandra Mondal. Approximate
computing: A survey of recent trends—bringing greenness to computing
and communication. Journal of The Institution of Engineers (India):
Series B, pages 1–8, 2019.

[12] Shubham Rai and et al. Logic synthesis meets machine learning: Trading
exactness for generalization. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2021.

[13] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken.
On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact
Synthesis. In 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1649–1654, 2019.

[14] Julian F. Miller and Lukas Sekanina. Cartesian genetic programming
and its applications, 2021.

[15] Benjamin Doerr and Carola Doerr. Optimal parameter choices through
self-adjustment: Applying the 1/5-th rule in discrete settings. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pages 1335–1342, 2015.

[16] Nikolaus Hansen, Dirk V Arnold, and Anne Auger. Evolution strategies.
In Springer handbook of computational intelligence, pages 871–898.
Springer, 2015.


